key | value |
---|---|
id | 74831258 |
name | HAR-stacked-residual-bidir-LSTMs |
full_name | guillaume-chevalier/HAR-stacked-residual-bidir-LSTMs |
html_url | https://github.com/guillaume-chevalier/HAR-stacked-residual-bidir-LSTMs |
description | Using deep stacked residual bidirectional LSTM cells (RNN) with TensorFlow, we do Human Activity Recognition (HAR). Classifying the type of movement amongst 6 categories or 18 categories on 2 different datasets. |
created_at | Nov. 26, 2016, 2:41 p.m. |
updated_at | Oct. 29, 2024, 1:35 a.m. |
pushed_at | Nov. 6, 2022, 5:59 p.m. |
size | 533 |
stargazers_count | 319 |
watchers_count | 19 |
forks_count | 100 |
open_issues | 3 |
language | Python |
awesome_list |
https://github.com/guillaume-chevalier/Awesome-Deep-Learning-Resources |