keyvalue
id74831258
nameHAR-stacked-residual-bidir-LSTMs
full_nameguillaume-chevalier/HAR-stacked-residual-bidir-LSTMs
html_urlhttps://github.com/guillaume-chevalier/HAR-stacked-residual-bidir-LSTMs
descriptionUsing deep stacked residual bidirectional LSTM cells (RNN) with TensorFlow, we do Human Activity Recognition (HAR). Classifying the type of movement amongst 6 categories or 18 categories on 2 different datasets.
created_atNov. 26, 2016, 2:41 p.m.
updated_atOct. 29, 2024, 1:35 a.m.
pushed_atNov. 6, 2022, 5:59 p.m.
size533
stargazers_count319
watchers_count19
forks_count100
open_issues3
languagePython
awesome_list

https://github.com/guillaume-chevalier/Awesome-Deep-Learning-Resources